

Class 10 Mathematics – Chapter: Real Numbers

1. Introduction

Real Numbers include all rational and irrational numbers. This chapter builds on number systems studied previously.

2. Euclid's Division Lemma

If a and b are positive integers, then there exist unique integers q and r such that:

$$a = bq + r$$

where $0 \leq r < b$

This lemma is fundamental for finding the Highest Common Factor (HCF) of two numbers.

3. Fundamental Theorem of Arithmetic

Every composite number can be expressed as a product of prime numbers in a unique way, except for the order of the factors. This is called the prime factorization.

4. Revisiting Irrational Numbers

Numbers that cannot be expressed as $\frac{p}{q}$, where p and q are integers and $q \neq 0$, are called irrational numbers.
Examples: $\sqrt{2}$, $\sqrt{3}$, π , etc.

Proofs of irrationality for numbers like $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{5}$ are important.

5. Rational Numbers and Their Decimal Expansions

- Terminating decimals: Decimal expansion ends after a finite number of digits.
- Non-terminating recurring decimals: Digits repeat in a fixed pattern infinitely.

For a rational number $\frac{p}{q}$ in lowest form:

- If the prime factorization of q contains only 2 and/or 5, the decimal expansion terminates.
- Otherwise, it is non-terminating recurring.

6. Important Exam Tips

- Always express rational numbers in the lowest terms.
- Use Euclid's Lemma confidently for HCF questions.
-

Practice proving irrationality using contradiction method.

- Know the difference between terminating and non-terminating decimals clearly.